[K]AML

Array Manipulation Language
Reference Manual

Kaori Fukuoka kf2284@columbia.edu

Ankush Goel ag2812@columbia.edu
Maninder Singh ms3770@columbia.edu
Mayur Lodha md(2130@columbia.edu

COMS 4115: Programming Languages and Translators, Fall 2008: Prof. Stephen Edwards.

1

TABLE OF CONTENTS

Lo INTPOAUCTION. ..ttt et s e st sat e st sttt e bt et e s b e e sbeesaeesmeennees 3
2. LeXiCal CONVENTION ...ttt sttt st ettt et e b e bt e s bt e sbeesheesaeesanesmnesaees 4
P R (o 1= 01) =T TP TSRO UUOPR 4
2.2 WHILE SPACES .erviieeiiiiicciiieie e ettt e e e e e et ee e e e e e e e e atteaeeeeeesaabstaeaeaeaeeeseaansbeaaeesassaasssreneeasanannns 4
2.3 COMIMEBNES ettt e s e s et r e st e s e e e e mr e e e e s anre e e s nneeeeeanneneseanrenesannnes 4
2.4 ENA Of SEAtEMEBNT...coiuiiiiiiieeeee ettt sttt e st st st s e e e r e 4
2.5 COMMENTS Loiiiiiiiiiiiiii it a e a e se s s b s e e s b s e s s bbb s e s saba e e s sanns 4
3 3T AT Lo o PR PEPRS 4

N 1Y/ o =S 6
10 B N[00 =T PPV URURORPPPPN 6
A N o - 1Y OSSO OROROROOPRPRPPIRS 6
I A0 B 0 1=Tol = - o o USSP PPTOPRR 6

3.2.2 INTHIAHZATION 1.ttt saree s 6

I B =1 1T =T o | TPV UPTOPRRI 6

3.2.4 Length Of @N AITAY .ooeiiciiee e et e e a e e e naeas 6

3.2.5 MURIPIE EIEMENES ..eeeiiiieeceee e e rbae e e e abae e e naeas 6
Y | [= PP PO OUSTRURRTRION 7
5. SCOPE AN LIFEEIME ...ttt e et e e e et e e e e e eate e e e sbaeeeeeabaeeesastaeeeeseneaaans 7
B, EXPIESSIONS ceiiiiiiiiiiiiititieietetete et ee et eete et et ee et te et tetetetetete et teteteeeteeeeeeeeeettetetettteteteteteteteteteteteteteteteteteeeees 7
6.1 NUMETIC EXPrESSIONS c.ueiiiiieeees ittt et e e sssirreeeeesssssbtateeeessssssbrraeeeesssss sesssssenaaesssssssssseneesssnnns 7
6.2 Array FUNCEION EXPrESSIONS .eeviiiiiiiiiiiiiieeeeeiisiiiiteeeesessiiiereeeesssssssrreeeeessssssssssseneeesssssssnssseesesssnnns 7
6.3 ASSIZNMENT EXPrESSIONS ...uuuiiii e e s e aeaeaeaesee s an s nnnnnnnnnnnnnrnnnnnnes 8
6.4 ArithmMEtiC EXPrESSIONSuuiiiiieiiicciiiee e et re e e e e e re e e e e e et te e e e e e e e e sesnneteeaeeeseennnsreneeeesanns 9
6.5 CoNditioNal EXPrESSIONS ...uviiiiiiiieeiiiieee e ciitee e eciteeeeette e e ssatee e e stteeessbaeeessatabaeeesstaeesansaeessnssaeessse 9

7. STAtEIMENTS Loiiiiiiiiiiiii e a e 9
7.1 Conditional STAtEMENTS ...coveiiieiie ittt sttt sttt eaee s 9
7.2 FOP SEAt@MEBNT ... e 9
7.3 Return STatementcoiiiiiiiiiiii i 10
7.4 FUNCEION DEFINITION ..c..iiiiiiiieiieee et et 10
7.5 FUNCEION Call ittt et s s sane s esanesanes 10
7.6 INPUL/OULPUL STALEMENTSeiieiieeieeetee ettt ettt eeta e e teeebee e eeateeebeeeteeensreesareean 10

I % 1 0] o LTS 11
N 0] 0= o T 1 VTP 12
2N 0] 0= 4 U 1D 700N 13

1. Introduction

[KJAML is an expressive and concise Array Manipulation language which features rich set
of operations on Arrays. Unlike other structured programming languages, [K]AML treats the array as
a primitive data type and array manipulations is done using high level operators. Thus, it would not
require a beginner to think of arrays as a collection of data but as a single data-type in itself. Using
[K]JAML, it becomes possible to express a computable function using just an expression in a single
line of code. This reduces the potential number of loops and allows for concise and compact
programs.

In Computer Science, most of the programming languages have concept of Arrays as one of
the fundamental data structures which consists of ordered, integer indexed collection of objects.
Array manipulations form an important as well as error prone part of many algorithms. For
functionalities which have support for arrays, it becomes important and necessary to have a language
which is handy and allows one to write more effective code. So far, no language has direct support
for array manipulations as they have for integer or other primitive data type. We need a language
using which array manipulating operations like adding all elements, returning a sub array satisfying
certain conditions, array concatenation, copying arrays, set operations on arrays can be performed
effectively.

2. Lexical Conventions

2.1 Identifiers

Identifiers consist of a sequence of letters and numbers. Letters contain lowercase and
uppercase alphabets from the ASCII set. The first character of an identifier must start with a
letter. Symbols are not allowed for identifiers.

2.2 White Spaces

White spaces are ignored during the compilation. The following characters are defined as
white spaces: space, newline, tabs, and comments.

2.3 Comments

Comments are defined by the two slashes without blanks: // and are single-line only.
Comments are ignored during compilation.

2.4 End of Statement

A single semicolon character (;) indicates that it is the end of each statement.

2.5 Constants

Only number is the type of constants that is defined in [K]JAML language.

2.6 Keywords

The following identifiers are the reserved keywords and cannot be used otherwise:
show get for function return

The following chart is a list of all character sequences that are also keywords. Each pattern is
listed with its corresponding token name.

Pattern Token name Pattern Token name
; SEMICOLON <- INSERT
[L BRACKET -> DELETE
] R BRACKET ? IF
{ L BRACE ! ELSE
} R BRACE “ QUOTE
(L PAREN > GREATER THAN
) R _PAREN < LESS THAN
= ASSIGN >= GREATER THAN EQUAL
+ PLUS <= LESS THAN EQUAL
- MINUS = EQUAL
* TIMES I= NOT _EQUAL
++ INCREMENT && AND
-- DECREMENT I OR
+= PLUSASSIGN %- DIFFERENCE
-= MINUSASSIGN %+ UNION
*= TIMESASSIGN %= INTERSECT
HASH >> MAX
RANGE << MIN
, COMMA < AVG

3. Types

Identifier can be defined in [K]AML as:

3.1 Number

The basic type in [K]AML is a number which consists of one or more digits in sequence.

3.2 Arrays

An array contains a sequence of elements of the same type. In [K]JAML, all arrays can contain
only numbers.

3.2.1 Declaration

Declaration of an array is specified with square bracket followed by its name. For multi-
dimensional array, the constant expression that specify the bounds of arrays can be missing
only for the first member of sequence. Eg: a[], b[][5]

3.2.2 Initialization

Array can be initialized as:
[la={1,2,3,4,5};
[1[4]b = {{1,2,3,4},{,1,2,4,5}};

3.2.3 Element

Each element of an array can be denoted as [i]a where 'a' is the identifier name of the array and
'' is the index number which indicates the element position at a distance from the beginning of
the array. For example, the first element of an array can be denoted as [0]a.

3.24 Length of an array

Length of an array is the number of elements in an array. Length of an array can be defined
with a palm sign followed by the identifier name: #a specifies the number of elements in an
array.

3.2.5 Multiple elements

Multiple elements of an array can be retrieved by using comma (,) and range (..) notations.
For example :-

[1, 4, 6]a; represents array with a sequence of elements [1]a, [4]a, and [6]a.
6

[2..4, T]a; represents array with a sequence of elements [2]a,[3]a,[4]a,[7]a.

[2..7][4]b; represents elements of rows 2 to 7 in column 4.

4. L-values

L-values are the variables which values can be assigned with corresponding addresses of memory

location. Any identifiers of basic type and array names can be modifiable L-value, which assigned
object can be changed and examined.

5. Scope and Lifetime

The variable declared in the code is extended throughout the file. If re-declaring of the same variable
name occurs, the most current value will be extended.

6. Expressions

Expressions are executed in a sequential order. They fall in following groups:
Expression — NumberExpression

| ArrayFunctionExpression

| AssignmentExpression

| ArithmeticExpression

| ConditionalExpression

6.1 Number Expressions

It specifies the numeric constant. It has the form

NumberExpression — Number

6.2 Array Function Expressions

These expressions are basically used to perform initialization and manipulation actions on
arrays. They have the following form:

ArrayFunctionExpression — ArrayExpression

6.3

| ArraylnitialiseExpression

| ConcatenateExpression

| InsertExpression

| DeleteExpression

| SetExpression

| SumArrayExpression

| ReverseExpression

| ArraySizeExpression
They have the form:
ArrayExpression — (LEFTSQUAREBRACKET (ListExpression)?

RIGHTSQUAREBRACKET)+ Identifier
ArraylnitialiseExpression — LEFTCURLBRACKET ElementList
RIGHTCURLBRACKET
ConcatenateExpression — ArrayExpression (PLUS ArrayExpression)+
InsertExpression — ArrayExpression LEFTARROW InitialiseExpression
DeleteExpression — ArrayExpression RIGHTARROW Number
SetExpression — (SETUNION | SETDIFFERENCE | SETINTERSECTION)?
ParameterizedExpression

SumArrayExpression — PLUS ArrayExpression
ReverseExpression — MINUS ArrayExpression

ArraySizeExpression — HASH ArrayExpression

Assignment Expressions

It is used to assign the value of second Expression to the first Expression. It has the form:

AssignmentExpression — Expression Operators Expression

6.4 Arithmetic Expressions

It takes first expression and second expression as the operands and evaluates them using the
operator defined. They have the form:

ArithmeticExpression — Expression (ArithmeticOperators Expression)+
The ArithmeticOperators includes the basic arithmetic operators like +, -, *.

6.5 ConditionalExpression

It has the form:
ConditionalExpression — Expression (ConditionalOperator Expression)*

The ConditionalOperator includes the basic conditional operators && and ||.

7. STATEMENTS

Unless explicitly specified, Statements are executed in sequence. Each statement is
terminated with a semicolon(;). Statements fall into following groups:

7.1 Conditional Statements

Conditional Statements is specified with CONDITION (?) followed by optional (!)
Expression.

? (Expression) {Statement} !{Statement}

If the Expression evaluates to a non zero value than first statement is executed else
statements within ! is executed. Each ! matches to its nearest CONDITION (?).

7.2 For Statements

It functions same as in other programming languages like C. It has the form:
for (Expression ; Expression) { Statement }

The first expression specifies the initialization and the condition for continuation of the loop
while the second expression specifies an action which is executed for each iteration of the
loop.

7.3 Return Statements

7.4

7.5

7.6

Return statement is used to return some value from the function. It is the onlyjump statement
in the language. It has the form:

return Expression;
The value of expression is evaluated and returned from the function call.

Function Definitions

Language provides support for user defined functions which has the form:
function Expression {Statements}

Expression specifies the name of the function with the parameterized list while statements
specifies the function body.

Function Calls

Functions can be called using the following form:
Identifier (Expression);

Identifier specifies the name of the function to be called while Expression contains the
parameter list to be passed to the function.

Input/Output Statements

These statements are of the form:

get (Expression)

Get statement is used to read data from stdin.
show (String)

Show statement is used to write to the stdout.

10

8. Example

Here is the example of programs based on [K]JAML syntax.

Consider a 2 dimensional array ‘a’ which stores the marks secured by various students in
different subjects. The rows represent the students and the columns represent the subjects. The
following program shows various operations that can be performed on this array.

for (j=0..#a[])

{
show(“Maximum marks of any student in this subject is:” >>a[][j]);
show(“Minimum marks of any student in this subject is:” <<a[][j]);
show(““Average marks of the class in this subject is” <>a[][j]);
[1e1=2(a[][j],<40);
[Je2=2(a[[j],>=60 && <80);
[1e3=2(a[1[j1,>80 && <90);
[le4=2(a[1[;1,=100);
show(“Number of students getting F in this course are” #c1);
show(“Number of students getting C in this course are” #c2);
show(“Number of students getting B+ in this course are” #c3);

show(“Number of students getting A+ in this course are” #c4);

11

Appendix - A

Operator Name

; end of statement
[1 array

{} brackets

() parenthesis

= assignment
+ summation

- elimination

* multiplication
+= increment

length of array

range

) separator

¢ string

<- insert

-> delete

? conditional if

! conditional else
> greater than
< less than

>= greater than or equal
<= less than or equal
== equal

1= not equal
&& and

| or

%- set difference
%+ set union
%= set intersection
>> max

<< min

<>

12 average

Appendix — B

Grammar

CompilationUnit — (Statement)*
Statement — Conditional Statement
| ForStatement
| ReturnStatement
| FunctionDefinition
| FunctionCall
| InputStatement
| OutputStatement
| Expression
ConditionlStatement — CONDITION ‘(“ Expression ‘)’ “{‘ Statement ’}’
(! “{* Statement ’}*)?
ForStatement — FOR (Expression ‘;” Expression) ‘{* Statement ‘}’
ReturnStatement — RETURN Expression
FunctionDefinition — FUNCTION Expression ‘{‘Statements’}’
FunctionCall — Identifier Expression
InputStatement — GET ‘(* Expression ‘)’
OutputStatement — SHOW *(“ String ‘)’
String — °” * Any combination of ASCII characters © * ¢
Expression — NumberExpression
| ArrayFunctionExpression
| AssignmentExpression
| ArithmeticExpression

| Conditional Expression

13

NumberExpression — Identifier
| Number
Identifier -> [‘a’..’z" ‘A’..’Z’ | [‘2’..’z *A’..’Z2° °0°.°9°]*
Number — (Digit)+
ArrayFunctionExpression — ArrayExpression
| ArraylnitialiseExpression
| ConcatenateExpression
| InsertExpression
| DeleteExpression
| SetExpression
| SumArrayExpression
| ReverseExpression

| ArraySizeExpression

ArrayExpression — LEFTSQUAREBRACKET (ListExpression)?
RIGHTSQUAREBRACKET Identifier

ListExpression — IncludeExpression | EliminateExpression

IncludeExpression — (ElementList IntervalList)*

ElementList — (Element (COMMA)?)*

Element — Number

IntervalList — (Interval (COMMA)?)*

Interval — Number RANGE Number

EliminateExpression — (EliminateElementList EliminatelntervalList)*

EliminateElementList — (MINUS Element (COMMA)?)*

EliminatelntervalList — (MINUS Interval (COMMA)?)*

ArraylnitialiseExpression — LEFTCURLBRACKET ElementList

RIGHTCURLBRACKET
ConcatenateExpression — ArrayExpression (PLUS ArrayExpression)+

InsertExpression — ArrayExpression LEFTARROW InitialiseExpression
14

DeleteExpression — ArrayExpression RIGHTARROW Number

SetExpression — (SETUNION | SETDIFFERENCE | SETINTERSECTION)?
ParameterizedExpression

ParameterizedExpression — LEFTROUNDBRACKET ParameterList

RIGHTROUNDBRACKET

ParameterList — (Expression (COMMA Expression)*)

SumArrayExpression — PLUS ArrayExpression

ReverseExpression — MINUS ArrayExpression

ArraySizeExpression — HASH ArrayExpression

AssignmentExpression — Expression Operators Expression

Operators — EQUAL | ArithmeticOperators

ArithmeticOperators — PLUS | MINUS | ASSIGNSUM | ASSIGNDIFFERENCE

ArithmeticExpression — Expression (ArithmeticOperators Expression)+

ConditionalExpression — Expression (ConditionalOperator Expression)+

ConditionalOperator — ‘<’ | >’ | ‘<="| >="| ‘=="|‘I="| ‘&&’ | ||’

15

